If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x^2-27x+18=0
a = -5; b = -27; c = +18;
Δ = b2-4ac
Δ = -272-4·(-5)·18
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-33}{2*-5}=\frac{-6}{-10} =3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+33}{2*-5}=\frac{60}{-10} =-6 $
| 9=-10+b | | X+100+2y=850 | | 3/4w-5=1-3/4 | | 13=9+w | | 5x+9+7x-5=180 | | 5x+9+7x-5=18-0 | | -3+8h=5 | | 3(u+8)-6u=6 | | 20x^2-15x+10=0 | | 4x-8=7x−2 | | 4h+6=2h+- | | 6x+7=11x+42 | | 3(x–4)–(x+5)=2x–11 | | 7x-(2x+26)=9 | | Z^2+3=10+3z | | x+7/16=9/8+x-9/3 | | -5x+12=5x-5−9(x+6)=−9x+108 | | x(2x3)=18 | | 16-3n=3 | | 6x+x=150 | | 4x^2+6x-5=35 | | 7+12s-6=9s+46-2s | | 23-4x=2x-13 | | 2.)4x4−40x2+36=0 | | (2x+1)(x+8+)=0 | | 15x+55=65 | | x=3.75x+45 | | -7u-1=6 | | -2.1x+0.5=53 | | -3x-16+5x-7x=8x+2x+26-5x | | 0.05x+0.10(400-×)=0.45 | | –13n+18=–17−18n |